Benchmarking#

The sktime.benchmarking module contains functionality to perform benchmarking.

Base#

BaseBenchmark([id_format])

Base class for benchmarks.

ForecastingBenchmark([id_format, backend, ...])

Forecasting benchmark.

BaseMetric(name, **kwargs)

BaseResults()

Base results class.

BaseDataset(name)

Base dataset class.

HDDBaseResults(path)

HDD results.

HDDBaseDataset(path, name)

HDD dataset.

UEADataset(path, name[, suffix_train, ...])

Represent a dataset in UEA/UCR format on the hard-drive.

RAMDataset(dataset, name)

Represent a dataset in RAM.

Evaluator(results)

Analyze results of machine learning experiments.

run_clustering_experiment(trainX, clusterer, ...)

Run a clustering experiment and save the results to file.

load_and_run_clustering_experiment(...[, ...])

Run a clustering experiment.

run_classification_experiment(X_train, ...)

Run a classification experiment and save the results to file.

load_and_run_classification_experiment(...)

Load a dataset and run a classification experiment.

Orchestrator(tasks, datasets, strategies, ...)

Fit and predict one or more estimators on one or more datasets.

RAMResults()

In-memory results.

HDDResults(path)

HDD results.

BaseStrategy(estimator[, name])

Abstract base strategy class.

BaseSupervisedLearningStrategy(estimator[, name])

Abstract strategy class for time series supervised learning.

TSCStrategy(estimator[, name])

Strategy for time series classification.

TSRStrategy(estimator[, name])

Strategy for time series regression.

BaseTask(target[, features, metadata])

Abstract base task class.

TSCTask(target[, features, metadata])

Time series classification task.

TSRTask(target[, features, metadata])

Time series regression task.

PairwiseMetric(func[, name])

Compute metric pairwise.

AggregateMetric(func[, method, name])

Compute metric pairwise.