KNeighborsTimeSeriesClassifier#

class KNeighborsTimeSeriesClassifier(n_neighbors=1, weights='uniform', algorithm='brute', distance='dtw', distance_params=None, distance_mtype=None, pass_train_distances=False, leaf_size=30, n_jobs=None)[source]#

KNN Time Series Classifier.

An adapted version of the scikit-learn KNeighborsClassifier for time series data.

This class is a KNN classifier which supports time series distance measures. It has hardcoded string references to numba based distances in sktime.distances, and can also be used with callables, or sktime (pairwise transformer) estimators.

Parameters:
n_neighborsint, set k for knn (default =1)
weights{‘uniform’, ‘distance’} or callable, default=’uniform’

Weight function used in prediction. Possible values: - ‘uniform’ : uniform weights. All points in each neighborhood

are weighted equally.

  • ‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away.

  • [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights.

algorithmstr, optional. default = ‘brute’

search method for neighbours one of {‘ball_tree’, ‘brute’, ‘brute_incr’}

  • ‘brute’ precomputes the distance matrix and applies sklearn KNeighborsClassifier directly. This algorithm is not memory efficient as it scales with the size of the distance matrix, but may be more runtime efficient.

  • ‘brute_incr’ passes the distance to sklearn KNeighborsClassifier, with algorithm='brute'. This is useful for large datasets, for memory efficiency, as the distance is used incrementally, without precomputation. However, this may be less runtime efficient.

  • ‘ball_tree’ uses a ball tree to find the nearest neighbors, using KNeighborsClassifier from sklearn. May be more runtime and memory efficient on mid-to-large datasets, however, the distance computation may be slower.

distancestr or callable, optional. default =’dtw’

distance measure between time series

  • if str, must be one of the following strings: ‘euclidean’, ‘squared’, ‘dtw’, ‘ddtw’, ‘wdtw’, ‘wddtw’, ‘lcss’, ‘edr’, ‘erp’, ‘msm’, ‘twe’ this will substitute a hard-coded distance metric from sktime.distances

  • If non-class callable, parameters can be passed via distance_params Example: knn_dtw = KNeighborsTimeSeriesClassifier( distance=’dtw’, distance_params={‘epsilon’:0.1})

  • if any callable, must be of signature (X: Panel, X2: Panel) -> np.ndarray output must be mxn array if X is Panel of m Series, X2 of n Series if distance_mtype is not set, must be able to take X, X2 which are pd_multiindex and numpy3D mtype can be pairwise panel transformer inheriting from BasePairwiseTransformerPanel

distance_paramsdict, optional. default = None.

dictionary for distance parameters, in case that distance is a str or callable

distance_mtypestr, or list of str optional. default = None.

mtype that distance expects for X and X2, if a callable only set this if distance is not BasePairwiseTransformerPanel descendant

pass_train_distancesbool, optional, default = False.

Whether distances between training points are computed and passed to sklearn. Passing is superfluous for algorithm=’brute’, but may have impact otherwise.

leaf_sizeint, default=30

Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem.

n_jobsint, default=None

The number of parallel jobs to run for neighbors search. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for more details. Doesn’t affect fit method.

Attributes:
is_fitted

Whether fit has been called.

Examples

>>> from sktime.classification.distance_based import KNeighborsTimeSeriesClassifier
>>> from sktime.datasets import load_unit_test
>>> X_train, y_train = load_unit_test(return_X_y=True, split="train")
>>> X_test, y_test = load_unit_test(return_X_y=True, split="test")
>>> classifier = KNeighborsTimeSeriesClassifier(distance="euclidean")
>>> classifier.fit(X_train, y_train)
KNeighborsTimeSeriesClassifier(...)
>>> y_pred = classifier.predict(X_test)

Methods

check_is_fitted()

Check if the estimator has been fitted.

clone()

Obtain a clone of the object with same hyper-parameters.

clone_tags(estimator[, tag_names])

Clone tags from another estimator as dynamic override.

create_test_instance([parameter_set])

Construct Estimator instance if possible.

create_test_instances_and_names([parameter_set])

Create list of all test instances and a list of names for them.

fit(X, y)

Fit time series classifier to training data.

fit_predict(X, y[, cv, change_state])

Fit and predict labels for sequences in X.

fit_predict_proba(X, y[, cv, change_state])

Fit and predict labels probabilities for sequences in X.

get_class_tag(tag_name[, tag_value_default])

Get a class tag's value.

get_class_tags()

Get class tags from the class and all its parent classes.

get_config()

Get config flags for self.

get_fitted_params([deep])

Get fitted parameters.

get_param_defaults()

Get object's parameter defaults.

get_param_names()

Get object's parameter names.

get_params([deep])

Get a dict of parameters values for this object.

get_tag(tag_name[, tag_value_default, ...])

Get tag value from estimator class and dynamic tag overrides.

get_tags()

Get tags from estimator class and dynamic tag overrides.

get_test_params([parameter_set])

Return testing parameter settings for the estimator.

is_composite()

Check if the object is composed of other BaseObjects.

kneighbors(X[, n_neighbors, return_distance])

Find the K-neighbors of a point.

load_from_path(serial)

Load object from file location.

load_from_serial(serial)

Load object from serialized memory container.

predict(X)

Predicts labels for sequences in X.

predict_proba(X)

Predicts labels probabilities for sequences in X.

reset()

Reset the object to a clean post-init state.

save([path, serialization_format])

Save serialized self to bytes-like object or to (.zip) file.

score(X, y)

Scores predicted labels against ground truth labels on X.

set_config(**config_dict)

Set config flags to given values.

set_params(**params)

Set the parameters of this object.

set_random_state([random_state, deep, ...])

Set random_state pseudo-random seed parameters for self.

set_tags(**tag_dict)

Set dynamic tags to given values.

kneighbors(X, n_neighbors=None, return_distance=True)[source]#

Find the K-neighbors of a point.

Returns indices of and distances to the neighbors of each point.

Parameters:
Xsktime-compatible data format, Panel or Series, with n_samples series
n_neighborsint

Number of neighbors to get (default is the value passed to the constructor).

return_distanceboolean, optional. Defaults to True.

If False, distances will not be returned

Returns:
distarray

Array representing the lengths to points, only present if return_distance=True

indarray

Indices of the nearest points in the population matrix.

classmethod get_test_params(parameter_set='default')[source]#

Return testing parameter settings for the estimator.

Parameters:
parameter_setstr, default=”default”

Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return "default" set. For classifiers, a “default” set of parameters should be provided for general testing, and a “results_comparison” set for comparing against previously recorded results if the general set does not produce suitable probabilities to compare against.

Returns:
paramsdict or list of dict, default={}

Parameters to create testing instances of the class. Each dict are parameters to construct an “interesting” test instance, i.e., MyClass(**params) or MyClass(**params[i]) creates a valid test instance. create_test_instance uses the first (or only) dictionary in params.

check_is_fitted()[source]#

Check if the estimator has been fitted.

Raises:
NotFittedError

If the estimator has not been fitted yet.

clone()[source]#

Obtain a clone of the object with same hyper-parameters.

A clone is a different object without shared references, in post-init state. This function is equivalent to returning sklearn.clone of self.

Raises:
RuntimeError if the clone is non-conforming, due to faulty __init__.

Notes

If successful, equal in value to type(self)(**self.get_params(deep=False)).

clone_tags(estimator, tag_names=None)[source]#

Clone tags from another estimator as dynamic override.

Parameters:
estimatorestimator inheriting from :class:BaseEstimator
tag_namesstr or list of str, default = None

Names of tags to clone. If None then all tags in estimator are used as tag_names.

Returns:
Self

Reference to self.

Notes

Changes object state by setting tag values in tag_set from estimator as dynamic tags in self.

classmethod create_test_instance(parameter_set='default')[source]#

Construct Estimator instance if possible.

Parameters:
parameter_setstr, default=”default”

Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.

Returns:
instanceinstance of the class with default parameters

Notes

get_test_params can return dict or list of dict. This function takes first or single dict that get_test_params returns, and constructs the object with that.

classmethod create_test_instances_and_names(parameter_set='default')[source]#

Create list of all test instances and a list of names for them.

Parameters:
parameter_setstr, default=”default”

Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.

Returns:
objslist of instances of cls

i-th instance is cls(**cls.get_test_params()[i])

nameslist of str, same length as objs

i-th element is name of i-th instance of obj in tests convention is {cls.__name__}-{i} if more than one instance otherwise {cls.__name__}

fit(X, y)[source]#

Fit time series classifier to training data.

State change:

Changes state to “fitted”.

Writes to self:

Sets self.is_fitted to True. Sets fitted model attributes ending in “_”.

Parameters:
Xsktime compatible time series panel data container, Panel scitype, e.g.,

pd-multiindex: pd.DataFrame with columns = variables, index = pd.MultiIndex with first level = instance indices, second level = time indices numpy3D: 3D np.array (any number of dimensions, equal length series) of shape [n_instances, n_dimensions, series_length] or of any other supported Panel mtype for list of mtypes, see datatypes.SCITYPE_REGISTER for specifications, see examples/AA_datatypes_and_datasets.ipynb

ysktime compatible tabular data container, Table scitype

1D iterable, of shape [n_instances] or 2D iterable, of shape [n_instances, n_dimensions] class labels for fitting 0-th indices correspond to instance indices in X 1-st indices (if applicable) correspond to multioutput vector indices in X supported sktime types: np.ndarray (1D, 2D), pd.Series, pd.DataFrame

Returns:
selfReference to self.
fit_predict(X, y, cv=None, change_state=True)[source]#

Fit and predict labels for sequences in X.

Convenience method to produce in-sample predictions and cross-validated out-of-sample predictions.

Writes to self, if change_state=True:

Sets self.is_fitted to True. Sets fitted model attributes ending in “_”.

Does not update state if change_state=False.

Parameters:
Xsktime compatible time series panel data container, Panel scitype, e.g.,

pd-multiindex: pd.DataFrame with columns = variables, index = pd.MultiIndex with first level = instance indices, second level = time indices numpy3D: 3D np.array (any number of dimensions, equal length series) of shape [n_instances, n_dimensions, series_length] or of any other supported Panel mtype for list of mtypes, see datatypes.SCITYPE_REGISTER for specifications, see examples/AA_datatypes_and_datasets.ipynb

ysktime compatible tabular data container, Table scitype

1D iterable, of shape [n_instances] or 2D iterable, of shape [n_instances, n_dimensions] class labels for fitting 0-th indices correspond to instance indices in X 1-st indices (if applicable) correspond to multioutput vector indices in X supported sktime types: np.ndarray (1D, 2D), pd.Series, pd.DataFrame

cvNone, int, or sklearn cross-validation object, optional, default=None

None : predictions are in-sample, equivalent to fit(X, y).predict(X) cv : predictions are equivalent to fit(X_train, y_train).predict(X_test)

where multiple X_train, y_train, X_test are obtained from cv folds returned y is union over all test fold predictions cv test folds must be non-intersecting

intequivalent to cv=KFold(cv, shuffle=True, random_state=x),

i.e., k-fold cross-validation predictions out-of-sample random_state x is taken from self if exists, otherwise x=None

change_statebool, optional (default=True)
if False, will not change the state of the classifier,

i.e., fit/predict sequence is run with a copy, self does not change

if True, will fit self to the full X and y,

end state will be equivalent to running fit(X, y)

Returns:
y_predsktime compatible tabular data container, Table scitype

1D iterable, of shape [n_instances] or 2D iterable, of shape [n_instances, n_dimensions] predicted class labels 0-th indices correspond to instance indices in X 1-st indices (if applicable) correspond to multioutput vector indices in X 1D np.npdarray, if y univariate (one dimension) otherwise, same type as y passed in fit

fit_predict_proba(X, y, cv=None, change_state=True)[source]#

Fit and predict labels probabilities for sequences in X.

Convenience method to produce in-sample predictions and cross-validated out-of-sample predictions.

Writes to self, if change_state=True:

Sets self.is_fitted to True. Sets fitted model attributes ending in “_”.

Does not update state if change_state=False.

Parameters:
Xsktime compatible time series panel data container, Panel scitype, e.g.,

pd-multiindex: pd.DataFrame with columns = variables, index = pd.MultiIndex with first level = instance indices, second level = time indices numpy3D: 3D np.array (any number of dimensions, equal length series) of shape [n_instances, n_dimensions, series_length] or of any other supported Panel mtype for list of mtypes, see datatypes.SCITYPE_REGISTER for specifications, see examples/AA_datatypes_and_datasets.ipynb

ysktime compatible tabular data container, Table scitype

1D iterable, of shape [n_instances] or 2D iterable, of shape [n_instances, n_dimensions] class labels for fitting 0-th indices correspond to instance indices in X 1-st indices (if applicable) correspond to multioutput vector indices in X supported sktime types: np.ndarray (1D, 2D), pd.Series, pd.DataFrame

cvNone, int, or sklearn cross-validation object, optional, default=None

None : predictions are in-sample, equivalent to fit(X, y).predict(X) cv : predictions are equivalent to fit(X_train, y_train).predict(X_test)

where multiple X_train, y_train, X_test are obtained from cv folds returned y is union over all test fold predictions cv test folds must be non-intersecting

int : equivalent to cv=Kfold(int), i.e., k-fold cross-validation predictions

change_statebool, optional (default=True)
if False, will not change the state of the classifier,

i.e., fit/predict sequence is run with a copy, self does not change

if True, will fit self to the full X and y,

end state will be equivalent to running fit(X, y)

Returns:
y_pred2D np.array of int, of shape [n_instances, n_classes]

predicted class label probabilities 0-th indices correspond to instance indices in X 1-st indices correspond to class index, in same order as in self.classes_ entries are predictive class probabilities, summing to 1

classmethod get_class_tag(tag_name, tag_value_default=None)[source]#

Get a class tag’s value.

Does not return information from dynamic tags (set via set_tags or clone_tags) that are defined on instances.

Parameters:
tag_namestr

Name of tag value.

tag_value_defaultany

Default/fallback value if tag is not found.

Returns:
tag_value

Value of the tag_name tag in self. If not found, returns tag_value_default.

classmethod get_class_tags()[source]#

Get class tags from the class and all its parent classes.

Retrieves tag: value pairs from _tags class attribute. Does not return information from dynamic tags (set via set_tags or clone_tags) that are defined on instances.

Returns:
collected_tagsdict

Dictionary of class tag name: tag value pairs. Collected from _tags class attribute via nested inheritance.

get_config()[source]#

Get config flags for self.

Returns:
config_dictdict

Dictionary of config name : config value pairs. Collected from _config class attribute via nested inheritance and then any overrides and new tags from _onfig_dynamic object attribute.

get_fitted_params(deep=True)[source]#

Get fitted parameters.

State required:

Requires state to be “fitted”.

Parameters:
deepbool, default=True

Whether to return fitted parameters of components.

  • If True, will return a dict of parameter name : value for this object, including fitted parameters of fittable components (= BaseEstimator-valued parameters).

  • If False, will return a dict of parameter name : value for this object, but not include fitted parameters of components.

Returns:
fitted_paramsdict with str-valued keys

Dictionary of fitted parameters, paramname : paramvalue keys-value pairs include:

  • always: all fitted parameters of this object, as via get_param_names values are fitted parameter value for that key, of this object

  • if deep=True, also contains keys/value pairs of component parameters parameters of components are indexed as [componentname]__[paramname] all parameters of componentname appear as paramname with its value

  • if deep=True, also contains arbitrary levels of component recursion, e.g., [componentname]__[componentcomponentname]__[paramname], etc

classmethod get_param_defaults()[source]#

Get object’s parameter defaults.

Returns:
default_dict: dict[str, Any]

Keys are all parameters of cls that have a default defined in __init__ values are the defaults, as defined in __init__.

classmethod get_param_names()[source]#

Get object’s parameter names.

Returns:
param_names: list[str]

Alphabetically sorted list of parameter names of cls.

get_params(deep=True)[source]#

Get a dict of parameters values for this object.

Parameters:
deepbool, default=True

Whether to return parameters of components.

  • If True, will return a dict of parameter name : value for this object, including parameters of components (= BaseObject-valued parameters).

  • If False, will return a dict of parameter name : value for this object, but not include parameters of components.

Returns:
paramsdict with str-valued keys

Dictionary of parameters, paramname : paramvalue keys-value pairs include:

  • always: all parameters of this object, as via get_param_names values are parameter value for that key, of this object values are always identical to values passed at construction

  • if deep=True, also contains keys/value pairs of component parameters parameters of components are indexed as [componentname]__[paramname] all parameters of componentname appear as paramname with its value

  • if deep=True, also contains arbitrary levels of component recursion, e.g., [componentname]__[componentcomponentname]__[paramname], etc

get_tag(tag_name, tag_value_default=None, raise_error=True)[source]#

Get tag value from estimator class and dynamic tag overrides.

Parameters:
tag_namestr

Name of tag to be retrieved

tag_value_defaultany type, optional; default=None

Default/fallback value if tag is not found

raise_errorbool

whether a ValueError is raised when the tag is not found

Returns:
tag_valueAny

Value of the tag_name tag in self. If not found, returns an error if raise_error is True, otherwise it returns tag_value_default.

Raises:
ValueError if raise_error is True i.e. if tag_name is not in
self.get_tags().keys()
get_tags()[source]#

Get tags from estimator class and dynamic tag overrides.

Returns:
collected_tagsdict

Dictionary of tag name : tag value pairs. Collected from _tags class attribute via nested inheritance and then any overrides and new tags from _tags_dynamic object attribute.

is_composite()[source]#

Check if the object is composed of other BaseObjects.

A composite object is an object which contains objects, as parameters. Called on an instance, since this may differ by instance.

Returns:
composite: bool

Whether an object has any parameters whose values are BaseObjects.

property is_fitted[source]#

Whether fit has been called.

classmethod load_from_path(serial)[source]#

Load object from file location.

Parameters:
serialresult of ZipFile(path).open(“object)
Returns:
deserialized self resulting in output at path, of cls.save(path)
classmethod load_from_serial(serial)[source]#

Load object from serialized memory container.

Parameters:
serial1st element of output of cls.save(None)
Returns:
deserialized self resulting in output serial, of cls.save(None)
predict(X)[source]#

Predicts labels for sequences in X.

Parameters:
Xsktime compatible time series panel data container, Panel scitype, e.g.,

pd-multiindex: pd.DataFrame with columns = variables, index = pd.MultiIndex with first level = instance indices, second level = time indices numpy3D: 3D np.array (any number of dimensions, equal length series) of shape [n_instances, n_dimensions, series_length] or of any other supported Panel mtype for list of mtypes, see datatypes.SCITYPE_REGISTER for specifications, see examples/AA_datatypes_and_datasets.ipynb

Returns:
y_predsktime compatible tabular data container, Table scitype

1D iterable, of shape [n_instances] or 2D iterable, of shape [n_instances, n_dimensions] predicted class labels 0-th indices correspond to instance indices in X 1-st indices (if applicable) correspond to multioutput vector indices in X 1D np.npdarray, if y univariate (one dimension) otherwise, same type as y passed in fit

predict_proba(X)[source]#

Predicts labels probabilities for sequences in X.

Parameters:
Xsktime compatible time series panel data container, Panel scitype, e.g.,

pd-multiindex: pd.DataFrame with columns = variables, index = pd.MultiIndex with first level = instance indices, second level = time indices numpy3D: 3D np.array (any number of dimensions, equal length series) of shape [n_instances, n_dimensions, series_length] or of any other supported Panel mtype for list of mtypes, see datatypes.SCITYPE_REGISTER for specifications, see examples/AA_datatypes_and_datasets.ipynb

Returns:
y_pred2D np.array of int, of shape [n_instances, n_classes]

predicted class label probabilities 0-th indices correspond to instance indices in X 1-st indices correspond to class index, in same order as in self.classes_ entries are predictive class probabilities, summing to 1

reset()[source]#

Reset the object to a clean post-init state.

Using reset, runs __init__ with current values of hyper-parameters (result of get_params). This Removes any object attributes, except:

  • hyper-parameters = arguments of __init__

  • object attributes containing double-underscores, i.e., the string “__”

Class and object methods, and class attributes are also unaffected.

Returns:
self

Instance of class reset to a clean post-init state but retaining the current hyper-parameter values.

Notes

Equivalent to sklearn.clone but overwrites self. After self.reset() call, self is equal in value to type(self)(**self.get_params(deep=False))

save(path=None, serialization_format='pickle')[source]#

Save serialized self to bytes-like object or to (.zip) file.

Behaviour: if path is None, returns an in-memory serialized self if path is a file location, stores self at that location as a zip file

saved files are zip files with following contents: _metadata - contains class of self, i.e., type(self) _obj - serialized self. This class uses the default serialization (pickle).

Parameters:
pathNone or file location (str or Path)

if None, self is saved to an in-memory object if file location, self is saved to that file location. If:

path=”estimator” then a zip file estimator.zip will be made at cwd. path=”/home/stored/estimator” then a zip file estimator.zip will be stored in /home/stored/.

serialization_format: str, default = “pickle”

Module to use for serialization. The available options are “pickle” and “cloudpickle”. Note that non-default formats might require installation of other soft dependencies.

Returns:
if path is None - in-memory serialized self
if path is file location - ZipFile with reference to the file
score(X, y) float[source]#

Scores predicted labels against ground truth labels on X.

Parameters:
Xsktime compatible time series panel data container, e.g.,

pd-multiindex: pd.DataFrame with columns = variables, index = pd.MultiIndex with first level = instance indices, second level = time indices numpy3D: 3D np.array (any number of dimensions, equal length series) of shape [n_instances, n_dimensions, series_length] or of any other supported Panel mtype for list of mtypes, see datatypes.SCITYPE_REGISTER for specifications, see examples/AA_datatypes_and_datasets.ipynb

ysktime compatible tabular data container, Table scitype

1D iterable, of shape [n_instances] or 2D iterable, of shape [n_instances, n_dimensions] class labels for fitting 0-th indices correspond to instance indices in X 1-st indices (if applicable) correspond to multioutput vector indices in X supported sktime types: np.ndarray (1D, 2D), pd.Series, pd.DataFrame

Returns:
float, accuracy score of predict(X) vs y
set_config(**config_dict)[source]#

Set config flags to given values.

Parameters:
config_dictdict

Dictionary of config name : config value pairs. Valid configs, values, and their meaning is listed below:

displaystr, “diagram” (default), or “text”

how jupyter kernels display instances of self

  • “diagram” = html box diagram representation

  • “text” = string printout

print_changed_onlybool, default=True

whether printing of self lists only self-parameters that differ from defaults (False), or all parameter names and values (False). Does not nest, i.e., only affects self and not component estimators.

warningsstr, “on” (default), or “off”

whether to raise warnings, affects warnings from sktime only

  • “on” = will raise warnings from sktime

  • “off” = will not raise warnings from sktime

backend:parallelstr, optional, default=”None”

backend to use for parallelization when broadcasting/vectorizing, one of

  • “None”: executes loop sequentally, simple list comprehension

  • “loky”, “multiprocessing” and “threading”: uses joblib.Parallel

  • “joblib”: custom and 3rd party joblib backends, e.g., spark

  • “dask”: uses dask, requires dask package in environment

backend:parallel:paramsdict, optional, default={} (no parameters passed)

additional parameters passed to the parallelization backend as config. Valid keys depend on the value of backend:parallel:

  • “None”: no additional parameters, backend_params is ignored

  • “loky”, “multiprocessing” and “threading”: default joblib backends any valid keys for joblib.Parallel can be passed here, e.g., n_jobs, with the exception of backend which is directly controlled by backend. If n_jobs is not passed, it will default to -1, other parameters will default to joblib defaults.

  • “joblib”: custom and 3rd party joblib backends, e.g., spark. Any valid keys for joblib.Parallel can be passed here, e.g., n_jobs, backend must be passed as a key of backend_params in this case. If n_jobs is not passed, it will default to -1, other parameters will default to joblib defaults.

  • “dask”: any valid keys for dask.compute can be passed, e.g., scheduler

Returns:
selfreference to self.

Notes

Changes object state, copies configs in config_dict to self._config_dynamic.

set_params(**params)[source]#

Set the parameters of this object.

The method works on simple estimators as well as on composite objects. Parameter key strings <component>__<parameter> can be used for composites, i.e., objects that contain other objects, to access <parameter> in the component <component>. The string <parameter>, without <component>__, can also be used if this makes the reference unambiguous, e.g., there are no two parameters of components with the name <parameter>.

Parameters:
**paramsdict

BaseObject parameters, keys must be <component>__<parameter> strings. __ suffixes can alias full strings, if unique among get_params keys.

Returns:
selfreference to self (after parameters have been set)
set_random_state(random_state=None, deep=True, self_policy='copy')[source]#

Set random_state pseudo-random seed parameters for self.

Finds random_state named parameters via estimator.get_params, and sets them to integers derived from random_state via set_params. These integers are sampled from chain hashing via sample_dependent_seed, and guarantee pseudo-random independence of seeded random generators.

Applies to random_state parameters in estimator depending on self_policy, and remaining component estimators if and only if deep=True.

Note: calls set_params even if self does not have a random_state, or none of the components have a random_state parameter. Therefore, set_random_state will reset any scikit-base estimator, even those without a random_state parameter.

Parameters:
random_stateint, RandomState instance or None, default=None

Pseudo-random number generator to control the generation of the random integers. Pass int for reproducible output across multiple function calls.

deepbool, default=True

Whether to set the random state in sub-estimators. If False, will set only self’s random_state parameter, if exists. If True, will set random_state parameters in sub-estimators as well.

self_policystr, one of {“copy”, “keep”, “new”}, default=”copy”
  • “copy” : estimator.random_state is set to input random_state

  • “keep” : estimator.random_state is kept as is

  • “new” : estimator.random_state is set to a new random state,

derived from input random_state, and in general different from it

Returns:
selfreference to self
set_tags(**tag_dict)[source]#

Set dynamic tags to given values.

Parameters:
**tag_dictdict

Dictionary of tag name: tag value pairs.

Returns:
Self

Reference to self.

Notes

Changes object state by setting tag values in tag_dict as dynamic tags in self.