RandomIntervalClassifier#
- class RandomIntervalClassifier(n_intervals=100, interval_transformers=None, estimator=None, n_jobs=1, random_state=None)[source]#
Random Interval Classifier.
This classifier simply transforms the input data using the RandomIntervals transformer and builds a provided estimator using the transformed data.
- Parameters:
- n_intervalsint, default=100,
The number of intervals of random length, position and dimension to be extracted.
- interval_transformerstransformer or list of transformers, default=None,
Transformer(s) used to extract features from each interval. If None, defaults to the Catch22 transformer.
- estimatorsklearn classifier, default=None
An sklearn estimator to be built using the transformed data. Defaults to a Rotation Forest with 200 trees.
- n_jobsint, default=1
The number of jobs to run in parallel for both
fit
andpredict
.-1
means using all processors.- random_stateint or None, default=None
Seed for random, integer.
- Attributes:
- n_classes_int
Number of classes. Extracted from the data.
- classes_ndarray of shape (n_classes)
Holds the label for each class.
See also
RandomIntervals
Examples
>>> from sktime.classification.feature_based import RandomIntervalClassifier >>> from sklearn.ensemble import RandomForestClassifier >>> from sktime.datasets import load_unit_test >>> X_train, y_train = load_unit_test(split="train", return_X_y=True) >>> X_test, y_test = load_unit_test(split="test", return_X_y=True) >>> clf = RandomIntervalClassifier( ... estimator=RandomForestClassifier(n_estimators=5) ... ) >>> clf.fit(X_train, y_train) RandomIntervalClassifier(...) >>> y_pred = clf.predict(X_test)
Methods
Check if the estimator has been fitted.
clone
()Obtain a clone of the object with same hyper-parameters.
clone_tags
(estimator[, tag_names])Clone tags from another estimator as dynamic override.
create_test_instance
([parameter_set])Construct Estimator instance if possible.
create_test_instances_and_names
([parameter_set])Create list of all test instances and a list of names for them.
fit
(X, y)Fit time series classifier to training data.
fit_predict
(X, y[, cv, change_state])Fit and predict labels for sequences in X.
fit_predict_proba
(X, y[, cv, change_state])Fit and predict labels probabilities for sequences in X.
get_class_tag
(tag_name[, tag_value_default])Get a class tag's value.
Get class tags from the class and all its parent classes.
Get config flags for self.
get_fitted_params
([deep])Get fitted parameters.
Get object's parameter defaults.
get_param_names
([sort])Get object's parameter names.
get_params
([deep])Get a dict of parameters values for this object.
get_tag
(tag_name[, tag_value_default, ...])Get tag value from estimator class and dynamic tag overrides.
get_tags
()Get tags from estimator class and dynamic tag overrides.
get_test_params
([parameter_set])Return testing parameter settings for the estimator.
Check if the object is composed of other BaseObjects.
load_from_path
(serial)Load object from file location.
load_from_serial
(serial)Load object from serialized memory container.
predict
(X)Predicts labels for sequences in X.
Predicts labels probabilities for sequences in X.
reset
()Reset the object to a clean post-init state.
save
([path, serialization_format])Save serialized self to bytes-like object or to (.zip) file.
score
(X, y)Scores predicted labels against ground truth labels on X.
set_config
(**config_dict)Set config flags to given values.
set_params
(**params)Set the parameters of this object.
set_random_state
([random_state, deep, ...])Set random_state pseudo-random seed parameters for self.
set_tags
(**tag_dict)Set dynamic tags to given values.
- classmethod get_test_params(parameter_set='default')[source]#
Return testing parameter settings for the estimator.
- Parameters:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return
"default"
set. For classifiers, a “default” set of parameters should be provided for general testing, and a “results_comparison” set for comparing against previously recorded results if the general set does not produce suitable probabilities to compare against.
- Returns:
- paramsdict or list of dict, default={}
Parameters to create testing instances of the class. Each dict are parameters to construct an “interesting” test instance, i.e.,
MyClass(**params)
orMyClass(**params[i])
creates a valid test instance.create_test_instance
uses the first (or only) dictionary inparams
.
- check_is_fitted()[source]#
Check if the estimator has been fitted.
- Raises:
- NotFittedError
If the estimator has not been fitted yet.
- clone()[source]#
Obtain a clone of the object with same hyper-parameters.
A clone is a different object without shared references, in post-init state. This function is equivalent to returning sklearn.clone of self.
- Raises:
- RuntimeError if the clone is non-conforming, due to faulty
__init__
.
- RuntimeError if the clone is non-conforming, due to faulty
Notes
If successful, equal in value to
type(self)(**self.get_params(deep=False))
.
- clone_tags(estimator, tag_names=None)[source]#
Clone tags from another estimator as dynamic override.
- Parameters:
- estimatorestimator inheriting from :class:BaseEstimator
- tag_namesstr or list of str, default = None
Names of tags to clone. If None then all tags in estimator are used as tag_names.
- Returns:
- Self
Reference to self.
Notes
Changes object state by setting tag values in tag_set from estimator as dynamic tags in self.
- classmethod create_test_instance(parameter_set='default')[source]#
Construct Estimator instance if possible.
- Parameters:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.
- Returns:
- instanceinstance of the class with default parameters
Notes
get_test_params can return dict or list of dict. This function takes first or single dict that get_test_params returns, and constructs the object with that.
- classmethod create_test_instances_and_names(parameter_set='default')[source]#
Create list of all test instances and a list of names for them.
- Parameters:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.
- Returns:
- objslist of instances of cls
i-th instance is cls(**cls.get_test_params()[i])
- nameslist of str, same length as objs
i-th element is name of i-th instance of obj in tests convention is {cls.__name__}-{i} if more than one instance otherwise {cls.__name__}
- fit(X, y)[source]#
Fit time series classifier to training data.
- State change:
Changes state to “fitted”.
- Writes to self:
Sets self.is_fitted to True. Sets fitted model attributes ending in “_”.
- Parameters:
- Xsktime compatible time series panel data container of Panel scitype
time series to fit the estimator to.
Can be in any mtype of
Panel
scitype, for instance:pd-multiindex: pd.DataFrame with columns = variables, index = pd.MultiIndex with first level = instance indices, second level = time indices
numpy3D: 3D np.array (any number of dimensions, equal length series) of shape [n_instances, n_dimensions, series_length]
or of any other supported
Panel
mtype
for list of mtypes, see
datatypes.SCITYPE_REGISTER
for specifications, see
examples/AA_datatypes_and_datasets.ipynb
Not all estimators support panels with multivariate or unequal length series, see the tag reference for details.
- ysktime compatible tabular data container, Table scitype
1D iterable, of shape [n_instances] or 2D iterable, of shape [n_instances, n_dimensions] class labels for fitting 0-th indices correspond to instance indices in X 1-st indices (if applicable) correspond to multioutput vector indices in X supported sktime types: np.ndarray (1D, 2D), pd.Series, pd.DataFrame
- Returns:
- selfReference to self.
- fit_predict(X, y, cv=None, change_state=True)[source]#
Fit and predict labels for sequences in X.
Convenience method to produce in-sample predictions and cross-validated out-of-sample predictions.
- Writes to self, if change_state=True:
Sets self.is_fitted to True. Sets fitted model attributes ending in “_”.
Does not update state if change_state=False.
- Parameters:
- Xsktime compatible time series panel data container of Panel scitype
time series to fit to and predict labels for.
Can be in any mtype of
Panel
scitype, for instance:pd-multiindex: pd.DataFrame with columns = variables, index = pd.MultiIndex with first level = instance indices, second level = time indices
numpy3D: 3D np.array (any number of dimensions, equal length series) of shape [n_instances, n_dimensions, series_length]
or of any other supported
Panel
mtype
for list of mtypes, see
datatypes.SCITYPE_REGISTER
for specifications, see
examples/AA_datatypes_and_datasets.ipynb
Not all estimators support panels with multivariate or unequal length series, see the tag reference for details.
- ysktime compatible tabular data container, Table scitype
1D iterable, of shape [n_instances] or 2D iterable, of shape [n_instances, n_dimensions] class labels for fitting 0-th indices correspond to instance indices in X 1-st indices (if applicable) correspond to multioutput vector indices in X supported sktime types: np.ndarray (1D, 2D), pd.Series, pd.DataFrame
- cvNone, int, or sklearn cross-validation object, optional, default=None
None : predictions are in-sample, equivalent to
fit(X, y).predict(X)
cv : predictions are equivalent to
fit(X_train, y_train).predict(X_test)
, where multipleX_train
,y_train
,X_test
are obtained fromcv
folds. returnedy
is union over all test fold predictions,cv
test folds must be non-intersectingint : equivalent to
cv=KFold(cv, shuffle=True, random_state=x)
, i.e., k-fold cross-validation predictions out-of-sample, and whererandom_state
x
is taken fromself
if exists, otherwisex=None
- change_statebool, optional (default=True)
if False, will not change the state of the classifier, i.e., fit/predict sequence is run with a copy, self does not change
if True, will fit self to the full X and y, end state will be equivalent to running fit(X, y)
- Returns:
- y_predsktime compatible tabular data container, of Table scitype
predicted class labels
1D iterable, of shape [n_instances], or 2D iterable, of shape [n_instances, n_dimensions].
0-th indices correspond to instance indices in X, 1-st indices (if applicable) correspond to multioutput vector indices in X.
1D np.npdarray, if y univariate (one dimension); otherwise, same type as y passed in fit
- fit_predict_proba(X, y, cv=None, change_state=True)[source]#
Fit and predict labels probabilities for sequences in X.
Convenience method to produce in-sample predictions and cross-validated out-of-sample predictions.
- Writes to self, if change_state=True:
Sets self.is_fitted to True. Sets fitted model attributes ending in “_”.
Does not update state if change_state=False.
- Parameters:
- Xsktime compatible time series panel data container of Panel scitype
time series to fit to and predict labels for.
Can be in any mtype of
Panel
scitype, for instance:pd-multiindex: pd.DataFrame with columns = variables, index = pd.MultiIndex with first level = instance indices, second level = time indices
numpy3D: 3D np.array (any number of dimensions, equal length series) of shape [n_instances, n_dimensions, series_length]
or of any other supported
Panel
mtype
for list of mtypes, see
datatypes.SCITYPE_REGISTER
for specifications, see
examples/AA_datatypes_and_datasets.ipynb
Not all estimators support panels with multivariate or unequal length series, see the tag reference for details.
- ysktime compatible tabular data container, Table scitype
1D iterable, of shape [n_instances] or 2D iterable, of shape [n_instances, n_dimensions] class labels for fitting 0-th indices correspond to instance indices in X 1-st indices (if applicable) correspond to multioutput vector indices in X supported sktime types: np.ndarray (1D, 2D), pd.Series, pd.DataFrame
- cvNone, int, or sklearn cross-validation object, optional, default=None
None : predictions are in-sample, equivalent to
fit(X, y).predict(X)
cv : predictions are equivalent to
fit(X_train, y_train).predict(X_test)
, where multipleX_train
,y_train
,X_test
are obtained fromcv
folds. returnedy
is union over all test fold predictions,cv
test folds must be non-intersectingint : equivalent to
cv=KFold(cv, shuffle=True, random_state=x)
, i.e., k-fold cross-validation predictions out-of-sample, and whererandom_state
x
is taken fromself
if exists, otherwisex=None
- change_statebool, optional (default=True)
if False, will not change the state of the classifier, i.e., fit/predict sequence is run with a copy, self does not change
if True, will fit self to the full X and y, end state will be equivalent to running fit(X, y)
- Returns:
- y_pred2D np.array of int, of shape [n_instances, n_classes]
predicted class label probabilities 0-th indices correspond to instance indices in X 1-st indices correspond to class index, in same order as in self.classes_ entries are predictive class probabilities, summing to 1
- classmethod get_class_tag(tag_name, tag_value_default=None)[source]#
Get a class tag’s value.
Does not return information from dynamic tags (set via set_tags or clone_tags) that are defined on instances.
- Parameters:
- tag_namestr
Name of tag value.
- tag_value_defaultany
Default/fallback value if tag is not found.
- Returns:
- tag_value
Value of the tag_name tag in self. If not found, returns tag_value_default.
- classmethod get_class_tags()[source]#
Get class tags from the class and all its parent classes.
Retrieves tag: value pairs from _tags class attribute. Does not return information from dynamic tags (set via set_tags or clone_tags) that are defined on instances.
- Returns:
- collected_tagsdict
Dictionary of class tag name: tag value pairs. Collected from _tags class attribute via nested inheritance.
- get_config()[source]#
Get config flags for self.
- Returns:
- config_dictdict
Dictionary of config name : config value pairs. Collected from _config class attribute via nested inheritance and then any overrides and new tags from _onfig_dynamic object attribute.
- get_fitted_params(deep=True)[source]#
Get fitted parameters.
- State required:
Requires state to be “fitted”.
- Parameters:
- deepbool, default=True
Whether to return fitted parameters of components.
If True, will return a dict of parameter name : value for this object, including fitted parameters of fittable components (= BaseEstimator-valued parameters).
If False, will return a dict of parameter name : value for this object, but not include fitted parameters of components.
- Returns:
- fitted_paramsdict with str-valued keys
Dictionary of fitted parameters, paramname : paramvalue keys-value pairs include:
always: all fitted parameters of this object, as via
get_param_names
values are fitted parameter value for that key, of this objectif
deep=True
, also contains keys/value pairs of component parameters parameters of components are indexed as[componentname]__[paramname]
all parameters ofcomponentname
appear asparamname
with its valueif
deep=True
, also contains arbitrary levels of component recursion, e.g.,[componentname]__[componentcomponentname]__[paramname]
, etc
- classmethod get_param_defaults()[source]#
Get object’s parameter defaults.
- Returns:
- default_dict: dict[str, Any]
Keys are all parameters of cls that have a default defined in __init__ values are the defaults, as defined in __init__.
- classmethod get_param_names(sort=True)[source]#
Get object’s parameter names.
- Parameters:
- sortbool, default=True
Whether to return the parameter names sorted in alphabetical order (True), or in the order they appear in the class
__init__
(False).
- Returns:
- param_names: list[str]
List of parameter names of cls. If
sort=False
, in same order as they appear in the class__init__
. Ifsort=True
, alphabetically ordered.
- get_params(deep=True)[source]#
Get a dict of parameters values for this object.
- Parameters:
- deepbool, default=True
Whether to return parameters of components.
If True, will return a dict of parameter name : value for this object, including parameters of components (= BaseObject-valued parameters).
If False, will return a dict of parameter name : value for this object, but not include parameters of components.
- Returns:
- paramsdict with str-valued keys
Dictionary of parameters, paramname : paramvalue keys-value pairs include:
always: all parameters of this object, as via get_param_names values are parameter value for that key, of this object values are always identical to values passed at construction
if deep=True, also contains keys/value pairs of component parameters parameters of components are indexed as [componentname]__[paramname] all parameters of componentname appear as paramname with its value
if deep=True, also contains arbitrary levels of component recursion, e.g., [componentname]__[componentcomponentname]__[paramname], etc
- get_tag(tag_name, tag_value_default=None, raise_error=True)[source]#
Get tag value from estimator class and dynamic tag overrides.
- Parameters:
- tag_namestr
Name of tag to be retrieved
- tag_value_defaultany type, optional; default=None
Default/fallback value if tag is not found
- raise_errorbool
whether a ValueError is raised when the tag is not found
- Returns:
- tag_valueAny
Value of the tag_name tag in self. If not found, returns an error if raise_error is True, otherwise it returns tag_value_default.
- Raises:
- ValueError if raise_error is True i.e. if tag_name is not in
- self.get_tags().keys()
- get_tags()[source]#
Get tags from estimator class and dynamic tag overrides.
- Returns:
- collected_tagsdict
Dictionary of tag name : tag value pairs. Collected from _tags class attribute via nested inheritance and then any overrides and new tags from _tags_dynamic object attribute.
- is_composite()[source]#
Check if the object is composed of other BaseObjects.
A composite object is an object which contains objects, as parameters. Called on an instance, since this may differ by instance.
- Returns:
- composite: bool
Whether an object has any parameters whose values are BaseObjects.
- classmethod load_from_path(serial)[source]#
Load object from file location.
- Parameters:
- serialresult of ZipFile(path).open(“object)
- Returns:
- deserialized self resulting in output at
path
, ofcls.save(path)
- deserialized self resulting in output at
- classmethod load_from_serial(serial)[source]#
Load object from serialized memory container.
- Parameters:
- serial1st element of output of
cls.save(None)
- serial1st element of output of
- Returns:
- deserialized self resulting in output
serial
, ofcls.save(None)
- deserialized self resulting in output
- predict(X)[source]#
Predicts labels for sequences in X.
- Parameters:
- Xsktime compatible time series panel data container of Panel scitype
time series to predict labels for.
Can be in any mtype of
Panel
scitype, for instance:pd-multiindex: pd.DataFrame with columns = variables, index = pd.MultiIndex with first level = instance indices, second level = time indices
numpy3D: 3D np.array (any number of dimensions, equal length series) of shape [n_instances, n_dimensions, series_length]
or of any other supported
Panel
mtype
for list of mtypes, see
datatypes.SCITYPE_REGISTER
for specifications, see
examples/AA_datatypes_and_datasets.ipynb
Not all estimators support panels with multivariate or unequal length series, see the tag reference for details.
- Returns:
- y_predsktime compatible tabular data container, of Table scitype
predicted class labels
1D iterable, of shape [n_instances], or 2D iterable, of shape [n_instances, n_dimensions].
0-th indices correspond to instance indices in X, 1-st indices (if applicable) correspond to multioutput vector indices in X.
1D np.npdarray, if y univariate (one dimension); otherwise, same type as y passed in fit
- predict_proba(X)[source]#
Predicts labels probabilities for sequences in X.
- Parameters:
- Xsktime compatible time series panel data container of Panel scitype
time series to predict labels for.
Can be in any mtype of
Panel
scitype, for instance:pd-multiindex: pd.DataFrame with columns = variables, index = pd.MultiIndex with first level = instance indices, second level = time indices
numpy3D: 3D np.array (any number of dimensions, equal length series) of shape [n_instances, n_dimensions, series_length]
or of any other supported
Panel
mtype
for list of mtypes, see
datatypes.SCITYPE_REGISTER
for specifications, see
examples/AA_datatypes_and_datasets.ipynb
Not all estimators support panels with multivariate or unequal length series, see the tag reference for details.
- Returns:
- y_pred2D np.array of int, of shape [n_instances, n_classes]
predicted class label probabilities 0-th indices correspond to instance indices in X 1-st indices correspond to class index, in same order as in self.classes_ entries are predictive class probabilities, summing to 1
- reset()[source]#
Reset the object to a clean post-init state.
Using reset, runs __init__ with current values of hyper-parameters (result of get_params). This Removes any object attributes, except:
hyper-parameters = arguments of __init__
object attributes containing double-underscores, i.e., the string “__”
Class and object methods, and class attributes are also unaffected.
- Returns:
- self
Instance of class reset to a clean post-init state but retaining the current hyper-parameter values.
Notes
Equivalent to sklearn.clone but overwrites self. After self.reset() call, self is equal in value to type(self)(**self.get_params(deep=False))
- save(path=None, serialization_format='pickle')[source]#
Save serialized self to bytes-like object or to (.zip) file.
Behaviour: if
path
is None, returns an in-memory serialized self ifpath
is a file location, stores self at that location as a zip filesaved files are zip files with following contents: _metadata - contains class of self, i.e., type(self) _obj - serialized self. This class uses the default serialization (pickle).
- Parameters:
- pathNone or file location (str or Path)
if None, self is saved to an in-memory object if file location, self is saved to that file location. If:
path=”estimator” then a zip file
estimator.zip
will be made at cwd. path=”/home/stored/estimator” then a zip fileestimator.zip
will be stored in/home/stored/
.- serialization_format: str, default = “pickle”
Module to use for serialization. The available options are “pickle” and “cloudpickle”. Note that non-default formats might require installation of other soft dependencies.
- Returns:
- if
path
is None - in-memory serialized self - if
path
is file location - ZipFile with reference to the file
- if
- score(X, y) float [source]#
Scores predicted labels against ground truth labels on X.
- Parameters:
- Xsktime compatible time series panel data container of Panel scitype
time series to score predicted labels for.
Can be in any mtype of
Panel
scitype, for instance:pd-multiindex: pd.DataFrame with columns = variables, index = pd.MultiIndex with first level = instance indices, second level = time indices
numpy3D: 3D np.array (any number of dimensions, equal length series) of shape [n_instances, n_dimensions, series_length]
or of any other supported
Panel
mtype
for list of mtypes, see
datatypes.SCITYPE_REGISTER
for specifications, see
examples/AA_datatypes_and_datasets.ipynb
Not all estimators support panels with multivariate or unequal length series, see the tag reference for details.
- ysktime compatible tabular data container, Table scitype
1D iterable, of shape [n_instances] or 2D iterable, of shape [n_instances, n_dimensions] class labels for fitting 0-th indices correspond to instance indices in X 1-st indices (if applicable) correspond to multioutput vector indices in X supported sktime types: np.ndarray (1D, 2D), pd.Series, pd.DataFrame
- Returns:
- float, accuracy score of predict(X) vs y
- set_config(**config_dict)[source]#
Set config flags to given values.
- Parameters:
- config_dictdict
Dictionary of config name : config value pairs. Valid configs, values, and their meaning is listed below:
- displaystr, “diagram” (default), or “text”
how jupyter kernels display instances of self
“diagram” = html box diagram representation
“text” = string printout
- print_changed_onlybool, default=True
whether printing of self lists only self-parameters that differ from defaults (False), or all parameter names and values (False). Does not nest, i.e., only affects self and not component estimators.
- warningsstr, “on” (default), or “off”
whether to raise warnings, affects warnings from sktime only
“on” = will raise warnings from sktime
“off” = will not raise warnings from sktime
- backend:parallelstr, optional, default=”None”
backend to use for parallelization when broadcasting/vectorizing, one of
“None”: executes loop sequentally, simple list comprehension
“loky”, “multiprocessing” and “threading”: uses
joblib.Parallel
“joblib”: custom and 3rd party
joblib
backends, e.g.,spark
“dask”: uses
dask
, requiresdask
package in environment
- backend:parallel:paramsdict, optional, default={} (no parameters passed)
additional parameters passed to the parallelization backend as config. Valid keys depend on the value of
backend:parallel
:“None”: no additional parameters,
backend_params
is ignored“loky”, “multiprocessing” and “threading”: default
joblib
backends any valid keys forjoblib.Parallel
can be passed here, e.g.,n_jobs
, with the exception ofbackend
which is directly controlled bybackend
. Ifn_jobs
is not passed, it will default to-1
, other parameters will default tojoblib
defaults.“joblib”: custom and 3rd party
joblib
backends, e.g.,spark
. Any valid keys forjoblib.Parallel
can be passed here, e.g.,n_jobs
,backend
must be passed as a key ofbackend_params
in this case. Ifn_jobs
is not passed, it will default to-1
, other parameters will default tojoblib
defaults.“dask”: any valid keys for
dask.compute
can be passed, e.g.,scheduler
- Returns:
- selfreference to self.
Notes
Changes object state, copies configs in config_dict to self._config_dynamic.
- set_params(**params)[source]#
Set the parameters of this object.
The method works on simple estimators as well as on composite objects. Parameter key strings
<component>__<parameter>
can be used for composites, i.e., objects that contain other objects, to access<parameter>
in the component<component>
. The string<parameter>
, without<component>__
, can also be used if this makes the reference unambiguous, e.g., there are no two parameters of components with the name<parameter>
.- Parameters:
- **paramsdict
BaseObject parameters, keys must be
<component>__<parameter>
strings. __ suffixes can alias full strings, if unique among get_params keys.
- Returns:
- selfreference to self (after parameters have been set)
- set_random_state(random_state=None, deep=True, self_policy='copy')[source]#
Set random_state pseudo-random seed parameters for self.
Finds
random_state
named parameters viaestimator.get_params
, and sets them to integers derived fromrandom_state
viaset_params
. These integers are sampled from chain hashing viasample_dependent_seed
, and guarantee pseudo-random independence of seeded random generators.Applies to
random_state
parameters inestimator
depending onself_policy
, and remaining component estimators if and only ifdeep=True
.Note: calls
set_params
even ifself
does not have arandom_state
, or none of the components have arandom_state
parameter. Therefore,set_random_state
will reset anyscikit-base
estimator, even those without arandom_state
parameter.- Parameters:
- random_stateint, RandomState instance or None, default=None
Pseudo-random number generator to control the generation of the random integers. Pass int for reproducible output across multiple function calls.
- deepbool, default=True
Whether to set the random state in sub-estimators. If False, will set only
self
’srandom_state
parameter, if exists. If True, will setrandom_state
parameters in sub-estimators as well.- self_policystr, one of {“copy”, “keep”, “new”}, default=”copy”
“copy” :
estimator.random_state
is set to inputrandom_state
“keep” :
estimator.random_state
is kept as is“new” :
estimator.random_state
is set to a new random state,
derived from input
random_state
, and in general different from it
- Returns:
- selfreference to self