RandomSamplesAugmenter#
- class RandomSamplesAugmenter(n=1.0, without_replacement=True, random_state=42)[source]#
Draw random samples from time series.
transform
takes a time series \(X={x_1, x_2, ... , x_m}\) with \(m\) elements and returns \(X_t={x_i, x_{i+1}, ... , x_n}\), where \({x_i, x_{i+1}, ... , x_n}\) are \(n`=``n`\) random samples drawn from \(X\) (with orwithout_replacement
).- Parameters:
- n: int or float, optional (default = 1.0)
To specify an exact number of samples to draw, set n to an int value. Number of samples to draw. To specify the returned samples as a proportion of the given times series set n to a float value \(n \in [0, 1]\). By default, the same number of samples is returned as given by the input time series.
- without_replacement: bool, optional (default = True)
Whether to draw without replacement. If True, every sample of the input times series X will appear at most once in
Xt
.- random_state: None or int or ``np.random.RandomState`` instance, optional
“If int or RandomState, use it for drawing the random variates. If None, rely on
self.random_state
. Default is None.” [1]- References and Footnotes
- ———-
[1]: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.random_state.html
- Attributes:
is_fitted
Whether
fit
has been called.
Methods
check_is_fitted
([method_name])Check if the estimator has been fitted.
clone
()Obtain a clone of the object with same hyper-parameters and config.
clone_tags
(estimator[, tag_names])Clone tags from another object as dynamic override.
create_test_instance
([parameter_set])Construct an instance of the class, using first test parameter set.
create_test_instances_and_names
([parameter_set])Create list of all test instances and a list of names for them.
fit
(X[, y])Fit transformer to X, optionally to y.
fit_transform
(X[, y])Fit to data, then transform it.
get_class_tag
(tag_name[, tag_value_default])Get class tag value from class, with tag level inheritance from parents.
Get class tags from class, with tag level inheritance from parent classes.
Get config flags for self.
get_fitted_params
([deep])Get fitted parameters.
Get object's parameter defaults.
get_param_names
([sort])Get object's parameter names.
get_params
([deep])Get a dict of parameters values for this object.
get_tag
(tag_name[, tag_value_default, ...])Get tag value from instance, with tag level inheritance and overrides.
get_tags
()Get tags from instance, with tag level inheritance and overrides.
get_test_params
([parameter_set])Return testing parameter settings for the skbase object.
inverse_transform
(X[, y])Inverse transform X and return an inverse transformed version.
Check if the object is composed of other BaseObjects.
load_from_path
(serial)Load object from file location.
load_from_serial
(serial)Load object from serialized memory container.
reset
()Reset the object to a clean post-init state.
save
([path, serialization_format])Save serialized self to bytes-like object or to (.zip) file.
set_config
(**config_dict)Set config flags to given values.
set_params
(**params)Set the parameters of this object.
set_random_state
([random_state, deep, ...])Set random_state pseudo-random seed parameters for self.
set_tags
(**tag_dict)Set instance level tag overrides to given values.
transform
(X[, y])Transform X and return a transformed version.
update
(X[, y, update_params])Update transformer with X, optionally y.
- check_is_fitted(method_name=None)[source]#
Check if the estimator has been fitted.
Check if
_is_fitted
attribute is present andTrue
. Theis_fitted
attribute should be set toTrue
in calls to an object’sfit
method.If not, raises a
NotFittedError
.- Parameters:
- method_namestr, optional
Name of the method that called this function. If provided, the error message will include this information.
- Raises:
- NotFittedError
If the estimator has not been fitted yet.
- clone()[source]#
Obtain a clone of the object with same hyper-parameters and config.
A clone is a different object without shared references, in post-init state. This function is equivalent to returning
sklearn.clone
ofself
.Equivalent to constructing a new instance of
type(self)
, with parameters ofself
, that is,type(self)(**self.get_params(deep=False))
.If configs were set on
self
, the clone will also have the same configs as the original, equivalent to callingcloned_self.set_config(**self.get_config())
.Also equivalent in value to a call of
self.reset
, with the exception thatclone
returns a new object, instead of mutatingself
likereset
.- Raises:
- RuntimeError if the clone is non-conforming, due to faulty
__init__
.
- RuntimeError if the clone is non-conforming, due to faulty
- clone_tags(estimator, tag_names=None)[source]#
Clone tags from another object as dynamic override.
Every
scikit-base
compatible object has a dictionary of tags. Tags may be used to store metadata about the object, or to control behaviour of the object.Tags are key-value pairs specific to an instance
self
, they are static flags that are not changed after construction of the object.clone_tags
sets dynamic tag overrides from another object,estimator
.The
clone_tags
method should be called only in the__init__
method of an object, during construction, or directly after construction via__init__
.The dynamic tags are set to the values of the tags in
estimator
, with the names specified intag_names
.The default of
tag_names
writes all tags fromestimator
toself
.Current tag values can be inspected by
get_tags
orget_tag
.- Parameters:
- estimatorAn instance of :class:BaseObject or derived class
- tag_namesstr or list of str, default = None
Names of tags to clone. The default (
None
) clones all tags fromestimator
.
- Returns:
- self
Reference to
self
.
- classmethod create_test_instance(parameter_set='default')[source]#
Construct an instance of the class, using first test parameter set.
- Parameters:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.
- Returns:
- instanceinstance of the class with default parameters
- classmethod create_test_instances_and_names(parameter_set='default')[source]#
Create list of all test instances and a list of names for them.
- Parameters:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.
- Returns:
- objslist of instances of cls
i-th instance is
cls(**cls.get_test_params()[i])
- nameslist of str, same length as objs
i-th element is name of i-th instance of obj in tests. The naming convention is
{cls.__name__}-{i}
if more than one instance, otherwise{cls.__name__}
- fit(X, y=None)[source]#
Fit transformer to X, optionally to y.
- State change:
Changes state to “fitted”.
Writes to self:
Sets fitted model attributes ending in “_”, fitted attributes are inspectable via
get_fitted_params
.Sets
self.is_fitted
flag toTrue
.if
self.get_tag("remember_data")
isTrue
, memorizes X asself._X
, coerced toself.get_tag("X_inner_mtype")
.
- Parameters:
- Xtime series in
sktime
compatible data container format Data to fit transform to.
Individual data formats in
sktime
are so-called mtype specifications, each mtype implements an abstract scitype.Series
scitype = individual time series.pd.DataFrame
,pd.Series
, ornp.ndarray
(1D or 2D)Panel
scitype = collection of time series.pd.DataFrame
with 2-level rowMultiIndex
(instance, time)
,3D np.ndarray
(instance, variable, time)
,list
ofSeries
typedpd.DataFrame
Hierarchical
scitype = hierarchical collection of time series.pd.DataFrame
with 3 or more level rowMultiIndex
(hierarchy_1, ..., hierarchy_n, time)
For further details on data format, see glossary on mtype. For usage, see transformer tutorial
examples/03_transformers.ipynb
- yoptional, data in sktime compatible data format, default=None
Additional data, e.g., labels for transformation If
self.get_tag("requires_y")
isTrue
, must be passed infit
, not optional. For required format, see class docstring for details.
- Xtime series in
- Returns:
- selfa fitted instance of the estimator
- fit_transform(X, y=None)[source]#
Fit to data, then transform it.
Fits the transformer to X and y and returns a transformed version of X.
- State change:
Changes state to “fitted”.
Writes to self: _is_fitted : flag is set to True. _X : X, coerced copy of X, if remember_data tag is True
possibly coerced to inner type or update_data compatible type by reference, when possible
model attributes (ending in “_”) : dependent on estimator
- Parameters:
- Xtime series in
sktime
compatible data container format Data to fit transform to, and data to transform.
Individual data formats in
sktime
are so-called mtype specifications, each mtype implements an abstract scitype.Series
scitype = individual time series.pd.DataFrame
,pd.Series
, ornp.ndarray
(1D or 2D)Panel
scitype = collection of time series.pd.DataFrame
with 2-level rowMultiIndex
(instance, time)
,3D np.ndarray
(instance, variable, time)
,list
ofSeries
typedpd.DataFrame
Hierarchical
scitype = hierarchical collection of time series.pd.DataFrame
with 3 or more level rowMultiIndex
(hierarchy_1, ..., hierarchy_n, time)
For further details on data format, see glossary on mtype. For usage, see transformer tutorial
examples/03_transformers.ipynb
- yoptional, data in sktime compatible data format, default=None
Additional data, e.g., labels for transformation If
self.get_tag("requires_y")
isTrue
, must be passed infit
, not optional. For required format, see class docstring for details.
- Xtime series in
- Returns:
- transformed version of X
- type depends on type of X and scitype:transform-output tag:
- X | tf-output | type of return |
|----------|————–|------------------------| | Series | Primitives | pd.DataFrame (1-row) | | Panel | Primitives | pd.DataFrame | | Series | Series | Series | | Panel | Series | Panel | | Series | Panel | Panel |
- instances in return correspond to instances in X
- combinations not in the table are currently not supported
- Explicitly, with examples:
- if X is Series (e.g., pd.DataFrame) and transform-output is Series
then the return is a single Series of the same mtype Example: detrending a single series
- if X is Panel (e.g., pd-multiindex) and transform-output is Series
- then the return is Panel with same number of instances as X
(the transformer is applied to each input Series instance)
Example: all series in the panel are detrended individually
- if X is Series or Panel and transform-output is Primitives
then the return is pd.DataFrame with as many rows as instances in X Example: i-th row of the return has mean and variance of the i-th series
- if X is Series and transform-output is Panel
then the return is a Panel object of type pd-multiindex Example: i-th instance of the output is the i-th window running over X
- classmethod get_class_tag(tag_name, tag_value_default=None)[source]#
Get class tag value from class, with tag level inheritance from parents.
Every
scikit-base
compatible object has a dictionary of tags. Tags may be used to store metadata about the object, or to control behaviour of the object.Tags are key-value pairs specific to an instance
self
, they are static flags that are not changed after construction of the object.The
get_class_tag
method is a class method, and retrieves the value of a tag taking into account only class-level tag values and overrides.It returns the value of the tag with name
tag_name
from the object, taking into account tag overrides, in the following order of descending priority:Tags set in the
_tags
attribute of the class.Tags set in the
_tags
attribute of parent classes,
in order of inheritance.
Does not take into account dynamic tag overrides on instances, set via
set_tags
orclone_tags
, that are defined on instances.To retrieve tag values with potential instance overrides, use the
get_tag
method instead.- Parameters:
- tag_namestr
Name of tag value.
- tag_value_defaultany type
Default/fallback value if tag is not found.
- Returns:
- tag_value
Value of the
tag_name
tag inself
. If not found, returnstag_value_default
.
- classmethod get_class_tags()[source]#
Get class tags from class, with tag level inheritance from parent classes.
Every
scikit-base
compatible object has a dictionary of tags. Tags may be used to store metadata about the object, or to control behaviour of the object.Tags are key-value pairs specific to an instance
self
, they are static flags that are not changed after construction of the object.The
get_class_tags
method is a class method, and retrieves the value of a tag taking into account only class-level tag values and overrides.It returns a dictionary with keys being keys of any attribute of
_tags
set in the class or any of its parent classes.Values are the corresponding tag values, with overrides in the following order of descending priority:
Tags set in the
_tags
attribute of the class.Tags set in the
_tags
attribute of parent classes,
in order of inheritance.
Instances can override these tags depending on hyper-parameters.
To retrieve tags with potential instance overrides, use the
get_tags
method instead.Does not take into account dynamic tag overrides on instances, set via
set_tags
orclone_tags
, that are defined on instances.For including overrides from dynamic tags, use
get_tags
.- Returns:
- collected_tagsdict
Dictionary of tag name : tag value pairs. Collected from
_tags
class attribute via nested inheritance. NOT overridden by dynamic tags set byset_tags
orclone_tags
.
- get_config()[source]#
Get config flags for self.
Configs are key-value pairs of
self
, typically used as transient flags for controlling behaviour.get_config
returns dynamic configs, which override the default configs.Default configs are set in the class attribute
_config
of the class or its parent classes, and are overridden by dynamic configs set viaset_config
.Configs are retained under
clone
orreset
calls.- Returns:
- config_dictdict
Dictionary of config name : config value pairs. Collected from _config class attribute via nested inheritance and then any overrides and new tags from _onfig_dynamic object attribute.
- get_fitted_params(deep=True)[source]#
Get fitted parameters.
- State required:
Requires state to be “fitted”.
- Parameters:
- deepbool, default=True
Whether to return fitted parameters of components.
If True, will return a dict of parameter name : value for this object, including fitted parameters of fittable components (= BaseEstimator-valued parameters).
If False, will return a dict of parameter name : value for this object, but not include fitted parameters of components.
- Returns:
- fitted_paramsdict with str-valued keys
Dictionary of fitted parameters, paramname : paramvalue keys-value pairs include:
always: all fitted parameters of this object, as via get_param_names values are fitted parameter value for that key, of this object
if deep=True, also contains keys/value pairs of component parameters parameters of components are indexed as [componentname]__[paramname] all parameters of componentname appear as paramname with its value
if deep=True, also contains arbitrary levels of component recursion, e.g., [componentname]__[componentcomponentname]__[paramname], etc
- classmethod get_param_defaults()[source]#
Get object’s parameter defaults.
- Returns:
- default_dict: dict[str, Any]
Keys are all parameters of
cls
that have a default defined in__init__
. Values are the defaults, as defined in__init__
.
- classmethod get_param_names(sort=True)[source]#
Get object’s parameter names.
- Parameters:
- sortbool, default=True
Whether to return the parameter names sorted in alphabetical order (True), or in the order they appear in the class
__init__
(False).
- Returns:
- param_names: list[str]
List of parameter names of
cls
. Ifsort=False
, in same order as they appear in the class__init__
. Ifsort=True
, alphabetically ordered.
- get_params(deep=True)[source]#
Get a dict of parameters values for this object.
- Parameters:
- deepbool, default=True
Whether to return parameters of components.
If
True
, will return adict
of parameter name : value for this object, including parameters of components (=BaseObject
-valued parameters).If
False
, will return adict
of parameter name : value for this object, but not include parameters of components.
- Returns:
- paramsdict with str-valued keys
Dictionary of parameters, paramname : paramvalue keys-value pairs include:
always: all parameters of this object, as via
get_param_names
values are parameter value for that key, of this object values are always identical to values passed at constructionif
deep=True
, also contains keys/value pairs of component parameters parameters of components are indexed as[componentname]__[paramname]
all parameters ofcomponentname
appear asparamname
with its valueif
deep=True
, also contains arbitrary levels of component recursion, e.g.,[componentname]__[componentcomponentname]__[paramname]
, etc
- get_tag(tag_name, tag_value_default=None, raise_error=True)[source]#
Get tag value from instance, with tag level inheritance and overrides.
Every
scikit-base
compatible object has a dictionary of tags. Tags may be used to store metadata about the object, or to control behaviour of the object.Tags are key-value pairs specific to an instance
self
, they are static flags that are not changed after construction of the object.The
get_tag
method retrieves the value of a single tag with nametag_name
from the instance, taking into account tag overrides, in the following order of descending priority:Tags set via
set_tags
orclone_tags
on the instance,
at construction of the instance.
Tags set in the
_tags
attribute of the class.Tags set in the
_tags
attribute of parent classes,
in order of inheritance.
- Parameters:
- tag_namestr
Name of tag to be retrieved
- tag_value_defaultany type, optional; default=None
Default/fallback value if tag is not found
- raise_errorbool
whether a
ValueError
is raised when the tag is not found
- Returns:
- tag_valueAny
Value of the
tag_name
tag inself
. If not found, raises an error ifraise_error
is True, otherwise it returnstag_value_default
.
- Raises:
- ValueError, if
raise_error
isTrue
. The
ValueError
is then raised iftag_name
is not inself.get_tags().keys()
.
- ValueError, if
- get_tags()[source]#
Get tags from instance, with tag level inheritance and overrides.
Every
scikit-base
compatible object has a dictionary of tags. Tags may be used to store metadata about the object, or to control behaviour of the object.Tags are key-value pairs specific to an instance
self
, they are static flags that are not changed after construction of the object.The
get_tags
method returns a dictionary of tags, with keys being keys of any attribute of_tags
set in the class or any of its parent classes, or tags set viaset_tags
orclone_tags
.Values are the corresponding tag values, with overrides in the following order of descending priority:
Tags set via
set_tags
orclone_tags
on the instance,
at construction of the instance.
Tags set in the
_tags
attribute of the class.Tags set in the
_tags
attribute of parent classes,
in order of inheritance.
- Returns:
- collected_tagsdict
Dictionary of tag name : tag value pairs. Collected from
_tags
class attribute via nested inheritance and then any overrides and new tags from_tags_dynamic
object attribute.
- classmethod get_test_params(parameter_set='default')[source]#
Return testing parameter settings for the skbase object.
get_test_params
is a unified interface point to store parameter settings for testing purposes. This function is also used increate_test_instance
andcreate_test_instances_and_names
to construct test instances.get_test_params
should return a singledict
, or alist
ofdict
.Each
dict
is a parameter configuration for testing, and can be used to construct an “interesting” test instance. A call tocls(**params)
should be valid for all dictionariesparams
in the return ofget_test_params
.The
get_test_params
need not return fixed lists of dictionaries, it can also return dynamic or stochastic parameter settings.- Parameters:
- parameter_setstr, default=”default”
Name of the set of test parameters to return, for use in tests. If no special parameters are defined for a value, will return “default” set.
- Returns:
- paramsdict or list of dict, default = {}
Parameters to create testing instances of the class Each dict are parameters to construct an “interesting” test instance, i.e., MyClass(**params) or MyClass(**params[i]) creates a valid test instance. create_test_instance uses the first (or only) dictionary in params
- inverse_transform(X, y=None)[source]#
Inverse transform X and return an inverse transformed version.
- Currently it is assumed that only transformers with tags
“scitype:transform-input”=”Series”, “scitype:transform-output”=”Series”,
have an inverse_transform.
- State required:
Requires state to be “fitted”.
Accesses in self:
Fitted model attributes ending in “_”.
self.is_fitted
, must be True
- Parameters:
- Xtime series in
sktime
compatible data container format Data to fit transform to.
Individual data formats in
sktime
are so-called mtype specifications, each mtype implements an abstract scitype.Series
scitype = individual time series.pd.DataFrame
,pd.Series
, ornp.ndarray
(1D or 2D)Panel
scitype = collection of time series.pd.DataFrame
with 2-level rowMultiIndex
(instance, time)
,3D np.ndarray
(instance, variable, time)
,list
ofSeries
typedpd.DataFrame
Hierarchical
scitype = hierarchical collection of time series.pd.DataFrame
with 3 or more level rowMultiIndex
(hierarchy_1, ..., hierarchy_n, time)
For further details on data format, see glossary on mtype. For usage, see transformer tutorial
examples/03_transformers.ipynb
- yoptional, data in sktime compatible data format, default=None
Additional data, e.g., labels for transformation. Some transformers require this, see class docstring for details.
- Xtime series in
- Returns:
- inverse transformed version of X
of the same type as X, and conforming to mtype format specifications
- is_composite()[source]#
Check if the object is composed of other BaseObjects.
A composite object is an object which contains objects, as parameters. Called on an instance, since this may differ by instance.
- Returns:
- composite: bool
Whether an object has any parameters whose values are
BaseObject
descendant instances.
- property is_fitted[source]#
Whether
fit
has been called.Inspects object’s
_is_fitted` attribute that should initialize to ``False
during object construction, and be set to True in calls to an object’s fit method.- Returns:
- bool
Whether the estimator has been fit.
- classmethod load_from_path(serial)[source]#
Load object from file location.
- Parameters:
- serialresult of ZipFile(path).open(“object)
- Returns:
- deserialized self resulting in output at
path
, ofcls.save(path)
- deserialized self resulting in output at
- classmethod load_from_serial(serial)[source]#
Load object from serialized memory container.
- Parameters:
- serial1st element of output of
cls.save(None)
- serial1st element of output of
- Returns:
- deserialized self resulting in output
serial
, ofcls.save(None)
- deserialized self resulting in output
- reset()[source]#
Reset the object to a clean post-init state.
Results in setting
self
to the state it had directly after the constructor call, with the same hyper-parameters. Config values set byset_config
are also retained.A
reset
call deletes any object attributes, except:hyper-parameters = arguments of
__init__
written toself
, e.g.,self.paramname
whereparamname
is an argument of__init__
object attributes containing double-underscores, i.e., the string “__”. For instance, an attribute named “__myattr” is retained.
config attributes, configs are retained without change. That is, results of
get_config
before and afterreset
are equal.
Class and object methods, and class attributes are also unaffected.
Equivalent to
clone
, with the exception thatreset
mutatesself
instead of returning a new object.After a
self.reset()
call,self
is equal in value and state, to the object obtained after a constructor call``type(self)(**self.get_params(deep=False))``.- Returns:
- self
Instance of class reset to a clean post-init state but retaining the current hyper-parameter values.
- save(path=None, serialization_format='pickle')[source]#
Save serialized self to bytes-like object or to (.zip) file.
Behaviour: if
path
is None, returns an in-memory serialized self ifpath
is a file location, stores self at that location as a zip filesaved files are zip files with following contents: _metadata - contains class of self, i.e., type(self) _obj - serialized self. This class uses the default serialization (pickle).
- Parameters:
- pathNone or file location (str or Path)
if None, self is saved to an in-memory object if file location, self is saved to that file location. If:
path=”estimator” then a zip file
estimator.zip
will be made at cwd. path=”/home/stored/estimator” then a zip fileestimator.zip
will be stored in/home/stored/
.- serialization_format: str, default = “pickle”
Module to use for serialization. The available options are “pickle” and “cloudpickle”. Note that non-default formats might require installation of other soft dependencies.
- Returns:
- if
path
is None - in-memory serialized self - if
path
is file location - ZipFile with reference to the file
- if
- set_config(**config_dict)[source]#
Set config flags to given values.
- Parameters:
- config_dictdict
Dictionary of config name : config value pairs. Valid configs, values, and their meaning is listed below:
- displaystr, “diagram” (default), or “text”
how jupyter kernels display instances of self
“diagram” = html box diagram representation
“text” = string printout
- print_changed_onlybool, default=True
whether printing of self lists only self-parameters that differ from defaults (False), or all parameter names and values (False). Does not nest, i.e., only affects self and not component estimators.
- warningsstr, “on” (default), or “off”
whether to raise warnings, affects warnings from sktime only
“on” = will raise warnings from sktime
“off” = will not raise warnings from sktime
- backend:parallelstr, optional, default=”None”
backend to use for parallelization when broadcasting/vectorizing, one of
“None”: executes loop sequentally, simple list comprehension
“loky”, “multiprocessing” and “threading”: uses
joblib.Parallel
“joblib”: custom and 3rd party
joblib
backends, e.g.,spark
“dask”: uses
dask
, requiresdask
package in environment
- backend:parallel:paramsdict, optional, default={} (no parameters passed)
additional parameters passed to the parallelization backend as config. Valid keys depend on the value of
backend:parallel
:“None”: no additional parameters,
backend_params
is ignored“loky”, “multiprocessing” and “threading”: default
joblib
backends any valid keys forjoblib.Parallel
can be passed here, e.g.,n_jobs
, with the exception ofbackend
which is directly controlled bybackend
. Ifn_jobs
is not passed, it will default to-1
, other parameters will default tojoblib
defaults.“joblib”: custom and 3rd party
joblib
backends, e.g.,spark
. Any valid keys forjoblib.Parallel
can be passed here, e.g.,n_jobs
,backend
must be passed as a key ofbackend_params
in this case. Ifn_jobs
is not passed, it will default to-1
, other parameters will default tojoblib
defaults.“dask”: any valid keys for
dask.compute
can be passed, e.g.,scheduler
- input_conversionstr, one of “on” (default), “off”, or valid mtype string
controls input checks and conversions, for
_fit
,_transform
,_inverse_transform
,_update
"on"
- input check and conversion is carried out"off"
- input check and conversion are not carried out before passing data to inner methodsvalid mtype string - input is assumed to specified mtype, conversion is carried out but no check
- output_conversionstr, one of “on”, “off”, valid mtype string
controls output conversion for
_transform
,_inverse_transform
"on"
- if input_conversion is “on”, output conversion is carried out"off"
- output of_transform
,_inverse_transform
is directly returnedvalid mtype string - output is converted to specified mtype
- Returns:
- selfreference to self.
Notes
Changes object state, copies configs in config_dict to self._config_dynamic.
- set_params(**params)[source]#
Set the parameters of this object.
The method works on simple skbase objects as well as on composite objects. Parameter key strings
<component>__<parameter>
can be used for composites, i.e., objects that contain other objects, to access<parameter>
in the component<component>
. The string<parameter>
, without<component>__
, can also be used if this makes the reference unambiguous, e.g., there are no two parameters of components with the name<parameter>
.- Parameters:
- **paramsdict
BaseObject parameters, keys must be
<component>__<parameter>
strings.__
suffixes can alias full strings, if unique among get_params keys.
- Returns:
- selfreference to self (after parameters have been set)
- set_random_state(random_state=None, deep=True, self_policy='copy')[source]#
Set random_state pseudo-random seed parameters for self.
Finds
random_state
named parameters viaself.get_params
, and sets them to integers derived fromrandom_state
viaset_params
. These integers are sampled from chain hashing viasample_dependent_seed
, and guarantee pseudo-random independence of seeded random generators.Applies to
random_state
parameters inself
, depending onself_policy
, and remaining component objects if and only ifdeep=True
.Note: calls
set_params
even ifself
does not have arandom_state
, or none of the components have arandom_state
parameter. Therefore,set_random_state
will reset anyscikit-base
object, even those without arandom_state
parameter.- Parameters:
- random_stateint, RandomState instance or None, default=None
Pseudo-random number generator to control the generation of the random integers. Pass int for reproducible output across multiple function calls.
- deepbool, default=True
Whether to set the random state in skbase object valued parameters, i.e., component estimators.
If False, will set only
self
’srandom_state
parameter, if exists.If True, will set
random_state
parameters in component objects as well.
- self_policystr, one of {“copy”, “keep”, “new”}, default=”copy”
“copy” :
self.random_state
is set to inputrandom_state
“keep” :
self.random_state
is kept as is“new” :
self.random_state
is set to a new random state,
derived from input
random_state
, and in general different from it
- Returns:
- selfreference to self
- set_tags(**tag_dict)[source]#
Set instance level tag overrides to given values.
Every
scikit-base
compatible object has a dictionary of tags. Tags may be used to store metadata about the object, or to control behaviour of the object.Tags are key-value pairs specific to an instance
self
, they are static flags that are not changed after construction of the object.set_tags
sets dynamic tag overrides to the values as specified intag_dict
, with keys being the tag name, and dict values being the value to set the tag to.The
set_tags
method should be called only in the__init__
method of an object, during construction, or directly after construction via__init__
.Current tag values can be inspected by
get_tags
orget_tag
.- Parameters:
- **tag_dictdict
Dictionary of tag name: tag value pairs.
- Returns:
- Self
Reference to self.
- transform(X, y=None)[source]#
Transform X and return a transformed version.
- State required:
Requires state to be “fitted”.
Accesses in self:
Fitted model attributes ending in “_”.
self.is_fitted
, must be True
- Parameters:
- Xtime series in
sktime
compatible data container format Data to transform.
Individual data formats in
sktime
are so-called mtype specifications, each mtype implements an abstract scitype.Series
scitype = individual time series.pd.DataFrame
,pd.Series
, ornp.ndarray
(1D or 2D)Panel
scitype = collection of time series.pd.DataFrame
with 2-level rowMultiIndex
(instance, time)
,3D np.ndarray
(instance, variable, time)
,list
ofSeries
typedpd.DataFrame
Hierarchical
scitype = hierarchical collection of time series.pd.DataFrame
with 3 or more level rowMultiIndex
(hierarchy_1, ..., hierarchy_n, time)
For further details on data format, see glossary on mtype. For usage, see transformer tutorial
examples/03_transformers.ipynb
- yoptional, data in sktime compatible data format, default=None
Additional data, e.g., labels for transformation. Some transformers require this, see class docstring for details.
- Xtime series in
- Returns:
- transformed version of X
- type depends on type of X and scitype:transform-output tag:
transform
X
-output
type of return
Series
Primitives
pd.DataFrame (1-row)
Panel
Primitives
pd.DataFrame
Series
Series
Series
Panel
Series
Panel
Series
Panel
Panel
- instances in return correspond to instances in X
- combinations not in the table are currently not supported
- Explicitly, with examples:
- if X is Series (e.g., pd.DataFrame) and transform-output is Series
then the return is a single Series of the same mtype Example: detrending a single series
- if X is Panel (e.g., pd-multiindex) and transform-output is Series
- then the return is Panel with same number of instances as X
(the transformer is applied to each input Series instance)
Example: all series in the panel are detrended individually
- if X is Series or Panel and transform-output is Primitives
then the return is pd.DataFrame with as many rows as instances in X Example: i-th row of the return has mean and variance of the i-th series
- if X is Series and transform-output is Panel
then the return is a Panel object of type pd-multiindex Example: i-th instance of the output is the i-th window running over X
- update(X, y=None, update_params=True)[source]#
Update transformer with X, optionally y.
- State required:
Requires state to be “fitted”.
Accesses in self:
Fitted model attributes ending in “_”.
self.is_fitted
, must be True
Writes to self:
Fitted model attributes ending in “_”.
if
remember_data
tag is True, writes toself._X
, updated by values inX
, viaupdate_data
.
- Parameters:
- Xtime series in
sktime
compatible data container format Data to update transformation with
Individual data formats in
sktime
are so-called mtype specifications, each mtype implements an abstract scitype.Series
scitype = individual time series.pd.DataFrame
,pd.Series
, ornp.ndarray
(1D or 2D)Panel
scitype = collection of time series.pd.DataFrame
with 2-level rowMultiIndex
(instance, time)
,3D np.ndarray
(instance, variable, time)
,list
ofSeries
typedpd.DataFrame
Hierarchical
scitype = hierarchical collection of time series.pd.DataFrame
with 3 or more level rowMultiIndex
(hierarchy_1, ..., hierarchy_n, time)
For further details on data format, see glossary on mtype. For usage, see transformer tutorial
examples/03_transformers.ipynb
- yoptional, data in sktime compatible data format, default=None
Additional data, e.g., labels for transformation. Some transformers require this, see class docstring for details.
- Xtime series in
- Returns:
- selfa fitted instance of the estimator